Diversity, Distribution, and Population Structure of Environmental Viruses

Mya Breitbart

San Diego State University

Phage are the most abundant biological entites on the planet

In 1 mi of seawater:			
Viruses/Phage	10,000,000		
Heterotrophic Bacteria	1,000,000		
Photosynthetic Bacteria	100,000		
Protozoa	4,000		
Algae	3,000		
Zooplankton	<<1		
Great White Sharks	10 ⁻¹⁹		

Approximately 10³¹ phage in the world

Predators control microbial abundance

Ecological roles of phage

Shotgun libraries of uncultured phage communities

Filter to remove microbes (0.2 µm) Concentrate using a 100 kD TFF Purify phage using DNase, RNase, & CsCl **Extract phage DNA** Linker-Amplified Shotgun Libraries (LASLs) Sequence

* Breitbart et al., (2004) Diversity and population structure of a nearshore marine sediment viral community. Proc Royal Society B. 271. 565-574.
* Breitbart et al., (2003) Metagenomic analyses of an uncultured viral community from human feces. J Bacteriology. 85. 6220-6223.
* Breitbart et al., (2002) Genomic analysis of uncultured marine viral communities. PNAS. 99. 14250-14255.

<0.0002% of the global phage metagenome has been sampled

Rohwer (2003) Global phage diversity. Cell. 113.

> preview for Pedulla et al. (2003) Origins of highly mosaic mycobacteriophage genomes

Siphophage are the most common type of phage

Lytic versus Temperate

Marine phage share a common origin

Phage "signatures" of different environments

Phage communities are extremely diverse

Phage can move between environments

- Identical T7-like DNA polymerase genes found in freshwater, seawater, estuarine, sediment, terrestrial, extreme, and metazoan-associated environments

Breitbart et al., (2004) Global distribution of nearly identical phageencoded DNA sequences. FEMS Microb Lett 236 (2). 249-256.

- Phage-encoded exotoxin genes found throughout the environment

Casas et al., unpublished data.

- Phage successfully propagate on hosts from another environment

Sano et al., (2004) Movement of viruses between biomes. AEM. 70 (10).

Is everything everywhere?

Roseophage SIO1's transcription and replication are linked to phosphate availability

Pho-boxes spread throughout the genome - transcription response elements that are activated by phosphate starvation

PhoH-like protein, RNA reductase, nuclease

- proteins involved in phosphate metabolism
- Roseophage SIO1 uses host dNTPs

Phage can carry genes that are important for the host's metabolism

Conclusions

Most genetic novelty and diversity is in the phage fraction

- Shotgun libraries of uncultured communities

Distinct phage groups dominate in different environments

Environmental signatures

Phage are moving between biomes - constrains total phage diversity

Rohwer Lab - SDSU

Forest Rohwer Linda Wegley **Veronica Casas Emiko Sano** Jon Miyake

Funding

NSF - Biotic Surveys and Inventories - Biological Oceanography **EPA – STAR Fellowship**

Rob Edwards - UT Memphis **Anca Segall - SDSU SDSU-MCF** David Mead Lucigen

David Bangor Florent Angly

Math Guys - SDSU **Peter Salamon Joe Mahaffy James Nulton Ben Felts Beltran Rodriguez-Brito**

Rank abundance curve follows a power law

Mission Bay seawater sample

Model	% most abundant	Error	Number of species	Parameters of the model
Power Law	2.65	2.11	7420	B=0.73062
Exponential Law	0.42	16.2	7500	B=0.0042156
Logarithmic	3.02	2.81	1560	B=1.8054
Broken Stick	0.78	14.6	960	No additional parameters
Niche Preemption	0.476	38.1	8200	K=0.0047582
Lognormal	2.77	2.31	43110	Sigma=2.2237

Power Law $n_i = ai^{-b}$

 n_i = the number of individuals belonging to species i

 \mathcal{D}_{-} = the % abundance of the most abundant species

= related to the evenness of species in the community

Marine Microbial Food Web

Why power law?

Arises from a series of <u>connected</u>, <u>exponential</u> events

Example – Phage competing for same host

The power law can also be obtained using a single phage-host pair with Lotka-Volterra dynamics

Distinct phage groups dominate in different environments

		% in Marine	% in Fecal
Podophage	T7-like	41	5
	PZA-like	2	11
Myophage	T4-like	11	0
	P2-like	4	0
Siphophage	λ -like	32	11
	D29-like	1	5
	SK1-like	1	11
	TP901-like	6	21

Common origin for marine phage

Modeling phage-host population structure

Phage as Predators

- More abundant than prey
- Smaller than prey
- More diverse than prey
- Can directly change genetic diversity of prey through horizontal gene transfer
- Power law distribution

Power-law for a single phage-host pair

Most of the environmental sequences belong to a novel phage group - The PUP Clade **0** cultured isolates Yersinia **øYe03-12 112** environmental sequences **T7 T3** Roseophage SIO1 **Cyanophage P60 Breitbart et al., (in press) Global distribution of nearly** identical phage-encoded **5** cultured isolates sequences. FEMS Letters. **5** environmental sequences 0.1

Identical DNA polymerase sequences were found in phage communities from every major biome - aquifers, marine, soil, sediments, sea ice, corals, rumen, human, salterns

• HECTOR and PARIS were present in ~1 out of every 10⁶ phage particles sampled

• ~10²⁶ copies of HECTOR on the planet = 60 metric tons of this DNA sequence

Empirical functional forms

• Power Law:
$$n_i = ai^{-b}$$

- Logarithmic: $n_i = a(\log(i+1))^{-b}$
- Exponential Law: $n_i = ae^{-ib}$
- Lognormal

 n_i = the number of individuals belonging to species i D = the % of abundance of the most abundant species b = related to the evenness of species in the community Characteristics of phage populations (same/diff than euks?)

- Very diverse
- everything is very rare
- power law distribution
 - •Kill the winner with sharp peaks and long lulls
- things can move between environments (t7, emiko, toxins)
 - •But still can tell environments apart (PTP)
- lysogeny / importance of gene transfer
 - •But, still have the ability to identify groups

Human diseases associated with plasmidand phage-encoded exotoxins

	Anthrax	Bacillus anthracis	Plasmid
	Botulism	Clostridium botulinum	Phage and Plasmid
СТХ	Cholera	Vibrio cholerae	Phage and Plasmid
DTX	Diphtheria	Corynebacterium diphtheriae	Phage
STX	Diarrheagenic <i>E.</i> coli	Escherichia coli (EHEC strains)	Phage
	Tetanus	Clostridium tetani	Plasmid
	Toxic shock	Staphylococcus aureus	Phage
SEA	Staph Food Poisoning	Staphylococcus aureus	Phage and Plasmid
	Scalded Skin Syndrome	Staphylococcus aureus	Phage and Plasmid
	Scarlet fever	Streptococcus pyogenes	Phage
РТХ	Whooping cough	Bordetella pertussis	Phage (?)

Exotoxin-specific PCR positives from various sites in San Diego County

	Toxin				
Location	STX	SEA	DTX	PTX	CTX
SDSU: Book Store				+	
SDSU: Little Theatre			+		
SDSU: Scripps Cottage		+			
SDSU: Softball field		+	+		
SDSU: Olmeca Dorms		+			
SDSU: Physics			+	+	+
Singing Hills Golf Course				+	+
Flynn Springs		+	+	+	+
Crown Point Elementary field		+		+	
School				+	
Cuyamaca College	+	+	+		
Monte Vista HS	+			+	
Stelzer Park			+		
Santee Lakes Park				+	+
Lake Murray		+	+	+	+

~10% of samples are positives

Sediment

	Ioxin				
Location	STX	SEA	DTX	PTX	CT
San Vicente		+		+	+
Mission Bay 1				+	+
Lindo Lake				+	+
Reservoir				+	+
San Diego		+	+	+	+
Santee Lake #3				+	+
Fiesta Island				+	+
Pacific Beach				+	+
Solana Beach				+	
Ocean Beach				+	+
Encinitas				+	
Del Mar			+	+	+
Sea				+	+
Carlsbad				+	+
Otay Mesa	+		+		+
Imperial Beach				+	+
Chula Vista			+	+	+
Coronado				+	+
National City		+	+	+	
Scripps Ranch				+	+
Lake Murray				+	+
Lake Hodges		+	+	+	
La Jolla Shores				+	
T.J. Estuaries		+	+	+	+

Water

	Toxin	
Location	ΡΤΧ	СТХ
Lindo Lake	+	
Mission Beach	+	+
Lake Murray	+	+
Fiesta Island	+	+
San Diego River	+	+
Santee Lakes #3	+	+
Mission Bay #1	+	
Mission Bay #2	+	+
El Cap Reservoir	+	
Lake Jennings	+	+
Oceanside	+	
Imperial Beach	+	+
Chula Vista	+	
Pacific Beach	+	
Cardiff by the Sea	+	
Torrey Pines	+	
Ocean Beach	+	
Encinitas	+	+
San Vicente	+	
Coronado	+	
Scripps Ranch	+	+
Lake Hodges		+
La Jolla Shores	+	+
TJ Estuaries	+	+

RT-PCR for DTX (90 samples total)

Sample leastion

Sample tune

copies of DTX

Sample type	Sample location	U DIX
Soil	Valhalla HS (1 g)	54
	Old Town (1 g)	211
	Perkins Elementary (1 g)	83
	Cuyamaca College (1 g)	239
Sediment	Otay Mesa Reservoir (1 g)	181
	Imperial Beach (1 g)	625
Water	National City Marina (1 l)	279
	Cardiff (1 l)	123
	Torrey Pines (1 l)	961

SEA RT-PCR of phage fraction from soils

Also observed exotoxin genes in uncultured shotgun libraries

Exotoxin genes are in the free-phage fraction

Can phage move between biomes?

Fraction Name	Microbial	VLP	DOM
Filter Size	0.45 µm	0.2 µm	100 kD
Filterate Contains	Microbes, VLPs and DOM	VLPs and DOM	DOM

innoculum

VLP = viral-like particle ~ phage

food

Phage cannot find hosts at low concentrations - communities go extinct -

Mixing experiments

Marine phages can propagate on marine microbes from different locations

Freshwater, sediment, and soil phage communities can propagate on marine microbes

Growth versus Decay - endpoints

- Mission Bay microbial community

■ Microbes+VLPs+DOM ■ VLPs+DOM

There are <u>a lot</u> of different phage types:

- Majority of phage ORFs are unknowns
- ~20% of phage genomes have no known close relative
- Very high richness and Shannon Index

There are not a lot of different phage types:

- Hector and Paris are present in ~1 out of 10⁶ phage
- Exotoxin-encoding phage are common
- Mixing experiments
- Populations have power law distributions not lognormal

Scripps Pier water

Breitbart et al., (2002) Genomic analysis of uncultured marine viral communities. PNAS. 99:14250-14255.

Mission Bay water

Mission Bay sediment Breitbart et al., (2004) Diversity and population structure of a nearshore marine sediment viral community. Proc Royal Society B. 271. 565-574.

Breitbart et al., (2003) Metagenomic analyses of an uncultured viral community from human feces. J Bacteriology. 85 (20). 6220-6223.